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Introduction. This short essay has been motivated by a problem encountered in
Eisenhart’s discussion1 of the transformation from arbitrary to “isometric” (or
“isothermal/isothermic” in a terminology apparently due (∼1837) to Lamé)
parameterizations of surfaces in 3-space. I borrow from page 26 of my old
Mathematical Thermodynamics class notes (1967) and from related material
that appears on page 19 , Chapter I of my Thermal Physics notes (∼2002).

The construction procedure, and examples. Let

d–F = X(x, y)dx + Y (x, y)dy

be an inexact differential form: ∂X/∂ "= ∂Y/∂x. Look to the Pfaffian differential
equation

d–F = 0

which can be written
dy
dx

= −X(x, y)
Y (x, y)

≡ f(x, y)

The equations
f(x, y) = c : c constant

inscribe on the {x, y}-plane a c-parameterized family of curves. On any such
curve we have

df
dx

= ∂f
∂x

+ ∂f
∂y

dy
dx

= dc
dx

= 0

whence
∂f
∂x

+ ∂f
∂y

dy
dx

= ∂f
∂x

− ∂f
∂y

X
Y

= 0

giving
Y
∂f
∂x

= X
∂f
∂y

≡ χ(x, y)XY

With χ thus defined we have

∂f
∂x

= χX and ∂f
∂y

= χY

1 Treatise on the Differential Geometry of Curves and Surfaces (1909), §40.
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giving
χ = 1

X
∂f
∂x

= 1
Y
∂f
∂y

and
χd–F = ∂f

∂x
dx + ∂f

∂y
dy = df

So though d–F is inexact, χd–F = df is an exact differential form—rendered
exact by the “integrating factor” χ(x, y).

By an “n-form we understand expressions of the form

d–F =
n∑

k=1

Fk(x1, x2, . . . , xn)dxk

Every 1-form is manifestly exact, and every 2-form admits (by the preceding
construction) of an integrating factor (so is“integrable”). But n-forms with n ! 3
admit of integrating factors only exceptionally, as discussed and illustrated in
the class notes cited above. We are informed by Ince2 that, though integrating
factors do appear occasionally in earlier literature, the first person to treat
the idea in a systematic way was Euler (1734, 1760), and that significant
contributions to the subject were made by Clairaut (1739, 1740).

Examples. Look to the 2-form

d–F ≡ Xdx + Y dy = y dx − dy

which is transparently inexact: Xy = 1 while Yx = 0. Pfaff’s differential
equation3 d–F = 0 can be written

dy
dx

+ X
Y

= dy
dx

− y = 0

The general solution is

y(x; a) = ex+a : a is a constant of integration

which inscribes an a-parameterized population of curves on the {x, y}-plane.
An implicit description of those is provided by

f(x, y) = a where f(x, y) = log y − x

We now have
χ = 1

X
∂f
∂x

= − 1
y

= 1
Y
∂f
∂y

= − 1
y

2 E. L. Ince, Ordinary Differential Equations (1926), page 534.
3 Johann Friedrich Pfaff (1765–1825), a lifelong friend of Friedrich Schiller,

studied mathematics at Göttingen and practical astronomy in Berlin under
Bode, became the teacher of Gauss—his junior by twelve years— and of Möbius.
His brother Johann Wilhelm was also a professor of mathematics, while another
brother (Christian Heinrich) was a professor of medicine, physics and chemistry.
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which gives
χd–F = −y–1(ydx − dy)

= −dx + y–1dy

= d(−x + log y) = df

Look now to the (randomly constructed) 2-form

d–F ≡ Xdx + Y dy = x2y3dx + x3y dy

which is again transparently inexact: Xy = 3x2y2 while Yx = 3x2y. From

dy
dx

+ X
Y

= dy
dx

+ y2

x
= 0

we obtain
y(x; a) = 1

log x + a

Implicit description of the associated inscribed curves is provided by

f(x, y) = a where now f(x, y) = y–1 − log x

We are led thus to write

χ = 1
X
∂f
∂x

= − 1
x3y3

= 1
Y
∂f
∂y

= − 1
x3y3

which gives
χd–F = − 1

x3y3
(x2y3dx + x3y dy)

= − 1
x

dx − 1
y2

dy

= ∂f
∂x

dx + ∂f
∂y

dy = df

Look finally to an example taken from the differential geometry of surfaces,
an application of the sort that motivated this discussion. The vector

rrr =




sin u cos v
sin u sin v

cos u





provides a standard parametric construction of the unit sphere, and leads to
the quadratic form

ds2 = (rrru ···rrru)du2 + 2(rrru ···rrrv)dudv + (rrrv ···rrrv)dv2

= du2 + sin2u dv2

= (du + i sin u dv)(du − i sin u dv)

The factors are complex conjugates of one another. Look to the first:

d–F = Udu + V dv = du + i sin u dv
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which is again transparently inexact: 0 "= i cos u. The solution of

dv
du

+ U
V

= dv
du

− i 1
sin u

= 0

is
v(u; a) = i log

[
2 tan 1

2u
]
+ a

Implicit description of the curves thus inscribed on the {u, v}-plane is provided
by

f(u, v) = a where f(u, v) = v − i log
[
2 tan 1

2u
]

We are led thus to write

χ = 1
U
∂f
∂u

= 1
V
∂f
∂v

= −i csc u

and to observe that

χd–F = −i csc u · (du + i sin u dv) = (−i csc u du + dv) = df

By complex conjugation we have

d–F̄ = du − i sin u dv = 1
χ̄

df̄

and therefore
ds2 = d–F̄ d–F = |d–F |2 = 1

|χ|2 |df |
2

We write
λ = 1

|χ|2 = sin2u

and—since f(u, v) is a function—can write

f(u, v) = p(u, v) + iq(u, v)

with
p(u, v) = v and q(u, v) = − log

[
2 tan 1

2u
]

Inversely,
v(p, q) = p and u(p, q) = 2 arctan

[
1
2e−q

]

We have achieved thus a transformation {u, v} → {p, q} from {u, v}-coordinates
to {p, q}-coordinates, and by means of the latter have brought the metric to a
form that is conformally equivalent to the Euclidean metric:

ds2 = λ(dp2 + dq2)

We find
sin u = sin

[
2 arctan

[
1
2e−q

]]
= 4eq

4e2q + 1

cos u = cos
[
2 arctan

[
1
2e−q

]]
= 4e2q − 1

4e2q + 1
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so the sphere has acquired the re-parameterized description

rrr =





4eq

4e2q + 1
cos p

4eq

4e2q + 1
sin p

4e2q − 1
4e2q + 1





where p ranges on [0, 2π] and q ranges on [−∞, +∞]: the equator occurs at
q = − 1

2 log 4 = log 1
2 .

Conformality-preserving transformations.Let{p, q}refer(as above)to a conformal
parameterization of a surface Σ

ds2 = drrr ···drrr = λ(p, q) · (dp2 + dq2) = λ · (dp + idq)(dp − idq)

and let them stand in one or the other of the following relationships to new
parameters {P, Q}

p + iq = Z(P ± iQ) (%)

where Z(•) is an arbitrary smooth (real or complex-valued) function of a single
variable. Then

dp + idq = Z ′(P ± iQ) · (dP ± idQ)

gives
|dp + idq|2 = dp2 + dq2 = |Z ′|2 · (dP 2 + dQ2)

whence
ds2 = Λ · (dP 2 + dQ2)) with Λ(P, Q) = λ |Z ′|2

We conclude that from any conformal parameterization of Σ can be obtained a
double infinity of alternative conformal parameterizations, one for every choice
of Z(•).Eisenhart argues1 that—conversely—everypair of conformal parameters
stands in the relation (%).

A trivial example of historic importance. Look to the case

p + iq = Z(P + iQ) = (P + iQ)1 − i log 2 · (P + iQ)0

which entails
p = P

q = Q − log 2 = log
[
eQ

2

]

and is found with Mathematica’s assistance4 to send




4eq

4e2q + 1
cos p

4eq

4e2q + 1
sin p

4e2q − 1
4e2q + 1




−→




sechQ cosP
sechQ sinP

tanhQ





4 Use the command /.q→Log[eQ/2]//ExpToTrig//Simplify.
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Explicit calculation now supplies a conformal result

ds2 = drrr ···drrr = sech2Q · (dP 2 + dQ2)

that conforms to our expectation, since in the present instance |Z ′|2 = 1 so4

Λ = λ|Z ′|2 = sin2 u = sin2
(
2 arctan

[
1
2e−q

])
−→ sech2Q

The example is “trivial” in a sense that emerges from the observation that from
(%) we expect generally—by the Cauchy-Riemann equations—to have

∂p
∂P

= ∂q
∂Q

and ∂p
∂Q

= − ∂q
∂P

which indicate that we should in general expect to have p = p(P, Q), q = q(P, Q):
old depend upon both of new (and vice versa). But in the present instance the
Cauchy-Riemann equations reduce to

1 = 1 and 0 = 0 :
{

p(P, Q) linear in P , independent of Q
q(P, Q) linear in Q, independent of P

The example acquires historic importance, however, from the circumstance5

that it gives rise to the Mercator projection6 of the terrestrial globe. The
projection (onto the cylindar tangent at the equator, which is then unrolled to
produce the map) greatly distorts polar regions, but is of nautical importance
because—non-obviously, this being an indicator of Mercator’s mathematical
abilities: he worked a century before the invention of the calculus, and nearly
fifty years before the invention (by John Napier, in 1614) of natural logarithms—
it renders all “rhumb lines” or “loxodromes” (lines that cross all meridians7 at
the same angle) as straight lines.

Conclusions, so far as concerns the differential geometry of surfaces. In the
theory of surfaces Σ in R3 we benefit from a couple of lucky accidents: (i) the
quadratic differential form ds2 can invariably be factored—we have

Edu2 + 2Fdudv + Gdv2 =
(√

Edu + F + iH√
E

dv
)(√

Edu + F − iH√
E

dv
)

where from the Euclidean structure of R3 it follows that H ≡
√

EG − F 2 is
real—and (ii), the factors are 2-forms which invariably are integrable. The
metric structure of surfaces Σ in Rn (n > 3) is described by quadratic forms
ds2 which can be factored only exceptionally, and the factors—when they exist

5 See Exercise 16 on page 230 of Manfredo do Carmo’s Differential Geometry
of Curves and Surfaces (1976). This excellent text (originally published in
Portuguese) is available on the web as a free pdf download. Page 230 appears
as panel [238].

6 Gerardus Mercator (1512–1592) was a Flemish cartographer of great
distinction, but accomplished also in remarkably many other areas, as also
were his several sons. The Mercator projection appeared in 1569.

7 Seafarers could use a sextant to determine meridians (lines of constant
latitude), but were unable to determine longitude prior to the invention of
the marine chronometer by John Harrison (1693–1776) and others. Navigators
ignorant of longitude were obliged to assign prime importance to rhomb lines.
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—are (n − 1)-forms, which only exceptionally are integrable. One is deprived,
therefore, of the analytical apparatus that would permit one to achieve

ds =
n−1∑

i,j =1

gijdxidxj = λ(u1, u2 . . . , un−1) · (du2
1 + du2

2 + · · · + du2
n−1)

In 4-dimensional spacetime the situation would appear, however, to be somewhat
more tractable, insofar as surfaces in that context can be considered to be
moving surfaces Σ t in 3-space, so susceptible at each instant to analysis of the
type described above.

Incidental remarks. A small adjustment



sechQ cosP
sechQ sinP

tanhQ



 −→




sechQ cosP
sechQ sinP
Q − tanhQ





converts (what we may call) Mercator’s parameterization of the unit sphere into
a standard parameterization of the unit pseudosphere.

An alternative approach to the construction of isothermal coordinate systems
—one that I find problematic but that seems to be preferred by most modern
authors—was devised by Beltrami (1867). Its success hinges on one’s ability to
solve the “Beltrami equation,” which is of the form

∂w
∂z̄

= µ∂w
∂z

and has generated a vast literature. Gauss (1822), building upon results special
to surfaces of revolution that had been obtained by Lagrange (1779), was the
first to establish the general existence of isothermal coordinate systems and to
appreciate their general utility.8

APPENDIX
Isothermal parameterization of the pseudosphere. Restore generic parameters
{u, v} to the preceding construction of the unit pseudosphere, writing

rrr =




sechu cosv
sechu sinv
u − tanhu





Quick calculation supplies

ds2 = tanh2u du2 + sech2v dv2

= (tanhu du + i sechv dv)(tanhu du − i sechv dv)

Let
d–F = U(u, v)du + V (u, v)dv

= tanhu du + i sechv dv : manifestly inexact

8 See, for example, the Wikipedia articles “Isothermal coordinates” and
“Beltrami equation.”
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Look to the associated Pfaff equation d–F = 0 which can be written

dv
du

= −U
V

= i sinhu

the general solution of which is

v(u; a) = i coshu + a

Define
f(u, v) = v − i coshu

which by f(u, v) = a inscribes an a-parameterized population of curves on the
{u, v}-plane. Construct

χ(u, v) = 1
U
∂f
∂u

= 1
V
∂f
∂v

= −i coshu

and obtain
χd–F = ∂f

∂x
dx + ∂f

∂y
dy = df = dv − i sinhu du

whence
ds2 = d–F ·d–F̄ = 1

|χ|2 |df |
2

Write
f(u, v) = p(u, v) − iq(u, v) :

{
p(u, v) = v
q(u, v) = coshu

and obtain the conformal result

ds2 = λ(dp2 + dq2) with λ = sech2u

Which is to say

tanh2u du2 + sech2v dv2 = sech2u · (dv − i sinhu)(dv + i sinhu)

By functional inversion
u = arccoshq

v = p

which when introduced into rrr(u, v) give

rrr(p, q) =




q–1 cos p
q–1 sin p

arccoshq − q–1
√

q2 − 1





where p ranges on [0, 2π] and q ranges on [1,∞]. As was previously remarked,
from this particular isothermal parameterization of the unit pseudosphere
infinitely many others could be produced.


